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Overview

« Some background: Transition to strong convection; observations
of column water vapor

« Tracer anomaly probability distribution functions (pdfs) for the
tropics [Neelin et al., 2010]

— What?: Daily departures from monthly-means for the entire tropics and
regional subsamples of column water vapor (cwv) and other tracers

— Why?: Present aspects of pdf morphology (e.g., “long tails”) and establish
ubiquity across a variety of tracers [including my one AIRS-related slide!]
 High frequency cwv anomaly pdfs @ Nauru in the western
equatorial Pacific [Lintner et al., 2011]
— What?: Subdaily-to-synoptic cwv anomalies
— Why?. Explore genesis mechanisms for long-tailed pdfs

* Future directions:

— Connections between convection, dynamics, and tracers
— Multiple and/or idealized tracer approaches



Background: Transition to strong convection

« Convective quasi-equilibrium (QE) assumptions for convection
parameterizations

— Above an onset threshold [quantified in terms of, e.g., a critical column
moisture value], deep convection (precipitation) increases in order to
keep the system close to onset. [e.g., Arakawa & Schubert 1974; Betts
& Miller 1986; Moorthi & Suarez 1992; Randall & Pan 1993; Zhang &
McFarlane 1995; Emanuel 1993; Emanuel et al. 1994; Bretherton et al.
2004]

* There is a need for better characterization of the transition to
deep convection as a function of buoyancy-related fields, i.e.,

temperature & moisture.

— Both a temporal and spatial transition (e.g., yesterday’s talk by Brian
Medeiros)

— Results from Peters & Neelin [2006], Neelin et al. [2008, 2009]:
properties of continuous phase transition with critical phenomena



Observed frequency of normalized cwv counts
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To be considered here:

* A straightforward mechanism for generating long tails in cwv pdfs
[next slide] implies these should occur in other tropospheric
tracers.

— Are long-tailed pdfs evident in satellite observations and chemical transport
model simulations?

* Note: While long-tailed stratospheric pdfs are known [Sparling &
Bacmeister, 2000; Hu & Pierrehumbert, 2001, 2002], it's not
obvious whether we should see them in vertical integrals of
tropospheric tracers given the more complex flow in the
troposphere.

— Also: if similar tails are seen for other tropospheric tracers, then there is
corroborating evidence that passive tracer mechanisms may be relevant to

water vapor, even though water vapor is a highly active tracer.



Forced tracer advection-diffusion: a (simple)
prototype for generating long-tailed pdfs*
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Passive tracer pdfs for idealized flows

« 2D flow BMO2 configuration:

— “Vertical” cross-gradient 100
flow is vertically uniform,
horizontally sinusoidal, and

stochastic (Gaussian) in L 10-1

time. a

— “Horizontal” along-gradient o
flow is is spatially invariant 10'2
and sinusoidal in time.
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Tropicswide cwv pdfs
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« Top: Tropical Microwave Imager (TMI):

— Anomalies for instantaneous (scan
resolution) and daily-means defined as
departures from 30-day running means.
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— For low precipitation conditions, the tails
are still present, though more symmetric.

— Processes associated with deep
convection are not necessary for
generating long-tailed cwv pdfs.
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CO, pdfs
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CO pdfs
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Explaining cwyv tail asymmetry

107 L -
1005 :
10'2; i : , 1 -

10 8 6 4 2 0 -2 -4 -6 -8 -10

» Above: BMO2 pdf modified through addition of a deterministic vertical velocity field

— Stronger but less frequent upward motion, slower but more frequent downward motion
[as observed and modeled (Hui Su’s talk yesterday)] = Fatter positive side tail as in
observed cwv

» Other sources of asymmetry?

— Vertical structure/ behavior of moisture, i.e., nonuniform vertical gradient; BL “pinned” by
surface coupling but FT can become very dry with persistent downward motion

— Convective processes
» How to tease these apart?



cwv pdf from a cloud resolving model
Results courtesy of Dave Romps (UC Berkeley)
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» Asymmetric long-tailed pdf for “plume scales”
— No organizing large-scale vertical motion, but strong upward/downward asymmetry
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High-frequency cwv pdfs @ Nauru (167°E, 0°N)
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Vertical and horizontal structure of Nauru cwv
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Summary

* The bulk pdfs for a variety of tracers, including water vapor,
exhibit Gaussian cores and long (exponential or stretched
exponential) tails.

* |dealized forced passive tracer advection-diffusion problem

represent a simple prototype for understanding the genesis of
such long-tailed pdfs.

» Diagnostics based on the properties of bulk pdfs, e.g., core
widths, tail slopes, asymmetries, may be useful for analyzing
models, particularly when large amounts of data are involved.

* Analogous results for cwv variability at higher frequencies for a
single observing site (Nauru).



Future Directions: Changes in pollution extremes

Results courtesy of Arlene Fiore (Columbia) and Yuanyuan Fang (Princeton)

Idealized GFDL AM3 climate change simulations (20 years)
1990s: obs. decadal-mean SST and sea ice; 2090s: 1990s + mean changes from 19 AR-4 models (A1B)
Aerosol tracer: fixed lifetime, deposits like sulfate (ONLY WET DEP CHANGES)
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 Tracer roughly captures PM2.5 changes

* Cheaper option for AQ info from physical
Y. Fang et al., 2011; Y. Fang et al., in prep climate models (e.g., high res)

— Seasonality of tracer burden



Future directions: Linking convection and tracers
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» Above: GEOS-Chem cwv (shading) and CO (black line contours) for the period
January 13th-17th, 2005 near the South Atlantic Convergence Zone (SACZ).

* The approach of a moist phase wave on the 13th (red shading) and subsequent
eastward propagation is associated with a southeastward surge of high CO (solid
lines). As this outflow moves into the Atlantic, it becomes sheared into a more
filamentary structure that moves off toward higher latitudes.
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Comparison to NCEP/NCAR Reanalysis 1
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(squares) cwv:

— Anomalies defined w.r.t. 5
day running means, with the
radiometer cwv first
aggregated to 6 hour
averages.
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Lead-lag composites for Nauru cwv/clw and prec
Figure 7 from Holloway & Neelin [2(_)10]
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2 vertical level moisture model: shifting tails
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